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ABSTRACT: The Federal Aviation Administration (FAA) conducted full-scale traffic tests 

on new rigid pavement test items at the National Airport Pavement Test Facility (NAPTF). 

Construction Cycle 2 (CC2) consisted of three independent rigid test pavements on medium-

strength subgrade, as well as a smaller test strip constructed on low-strength subgrade. 

Trafficking of the three CC2 test items began in April 2004 and was completed in December 

2004. Tests were conducted using four- and six-wheel simulated aircraft gear loads, and were 

designed to compare three different support systems: conventional (aggregate) subbase, 

stabilized (econocrete) subbase, and slab-on-grade. This series of tests yielded significant data 

on the performance of rigid pavements constructed to current airport standards. This paper 

summarizes the trafficking data obtained from CC2 tests, and presents an analysis of the 

relation between gear coverages and pavement performance, making use of the structural 

condition index (SCI) concept. The performance of the test items is compared to the rigid 

pavement deterioration model used in FAA’s LEDFAA design procedure. Preliminary design 

factors (DF) for all tests were evaluated using a three-dimensional finite element response 

model as implemented in the FAA’s beta design computer program (FEDFAA). The results of 

these full-scale tests, supplemented by available data from historical full-scale tests conducted 

by the U.S. Army Corps of Engineers (COE), will be incorporated into the updated 

performance/failure models in the FAA’s new design procedures for rigid pavements, planned 

for 2006. 
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1 BACKGROUND AND OBJECTIVES 

The National Airport Pavement Test Facility (NAPTF), located at the Federal Aviation 

Administration (FAA) William J. Hughes Technical Center near Atlantic City, New Jersey, 

USA, is a unique fully enclosed facility dedicated to full-scale traffic testing of airport 

pavements under realistic aircraft loads. The facility was built as a cooperative venture of the 

FAA and the Boeing Company, and was opened in April 1999. Among the goals of the 

NAPTF testing program is to provide high-quality, full-scale performance and failure data for 

incorporation into new FAA pavement thickness design procedures, which are planned for 

completion in 2006. 
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To date, testing at the NAPTF has consisted of three construction cycles, which were 

designated CC1, CC2, and CC3. A construction cycle is defined as the complete cycle of 

planning, construction, trafficking, post-traffic testing and demolition needed to obtain a set of 

usable data. CC1 was the initial pavement construction consisting of nine pavement test items 

(six flexible and three rigid), constructed on three different subgrade materials: low strength 

(target CBR 3-4), medium strength (target CBR 6-7), and high-strength (target CBR 20). 

Testing of CC1 was completed in November 2001 and the original pavements were 

subsequently removed. CC2 consisted of three new rigid pavement test items constructed over 

the medium-strength subgrade, as well as a smaller-scale test strip and test slab. CC3 

consisted of four new flexible pavement test items constructed over the low-strength 

subgrade. The discussion in this paper is limited to the CC2 rigid pavement test items, 

including the test strip. 

The primary objectives of the CC2 tests were: (a) to compare rigid pavement life and 

performance for different support conditions; (b) to compare pavement life and performance 

for 4-wheel and 6-wheel gear traffic; and (c) to obtain data on pavement performance as 

measured by the Structural Condition Index (SCI) versus traffic repetitions. Other objectives 

included comparing interior and edge stresses under gear loads, and measuring shrinkage and 

curling of the concrete slabs. To accomplish the first objective, the three CC2 test items were 

designed with differing foundation types. A three-letter designation is used for each test item. 

The first two letters refer to the subgrade strength (medium – M) and the surface type (rigid – 

R), and the last letter refers to the type of construction: C for conventional (aggregate 

subbase), G for slab placed directly on grade, and S for stabilized (econocrete) base. The 

structural design information is given in Table 1. 

 

Table 1: Structural Design Data for CC2 Test Items. 

 

Test Item MRC MRG MRS 

PCC 

Surface 

30.5 cm (12 in.) PCC  

(P-501) 

30.5 cm (12 in.) PCC  

(P-501) 

30.5 cm (12 in.) PCC  

(P-501) 

Subbase 1 25.4 cm (10 in.) aggreg. 

subbase (P-154) 

none 15.2 cm (6 in.) econocrete 

base (P-306) 

Subbase 2 none none 21.9 cm (8.6 in.) 

aggregate subbase (P-154) 

Subgrade Clay (CH) 

k=35.3 MPa/m (130 pci) 

Clay (CH) 

k=38.0 MPa/m (140 pci) 

Clay (CH) 

k=38.0 MPa/m (140 pci) 

 

The test item layout is shown in Figure 1. All slabs were 4.57 x 4.57 m (15 x 15 ft.). Each 

of the test items consisted of 20 slabs arranged in four lanes of five slabs, for a total area of 

418 m
2
 (4,500 ft

2
). Test items were separated by paved transition areas 7.6 m (25 ft.) in 

length. The northern two lanes of slabs were trafficked by carriage 1, while the southern two 

lanes were trafficked by carriage 2. The basic wander pattern consisted of 33 discrete 

positions centered on the outside edge of the inside slab (see Figure 1), approximating a 

normal traffic distribution. While the original plan called for all three test items to be 

trafficked by 6-wheel traffic on the north side and 4-wheel traffic on the south side, this was 

actually done only for test items MRG and MRS. For test item MRC, both lanes were 

trafficked by 4-wheel gears, the difference being that the south side was trafficked by a full 

wander pattern (i.e., traffic on both the inside and outside slabs), while on the north side a 

truncated wander pattern was used (traffic applied to the inside lanes only). The gear 

dimensions are shown in Figure 2. 
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In general, paving materials were selected to conform to FAA construction standards as set 

forth in Advisory Circular (AC) 150/5370-10A (FAA, 1999). One significant deviation was 

the use of a concrete mix with 50% class C fly ash replacing cement. The relatively high 

replacement rate was intended to reduce the early strength of the mix, thus allowing 

somewhat thicker slabs that were more representative of airport pavements. It was also felt 

that thicker slabs would be less likely to exhibit upward curl. Likewise, joints were doweled 

in both directions, which both enforces uniformity of load transfer at joints and tends to 

reduce surface stresses in curled slabs. To minimize curling due to differential moisture-

related shrinkage, the slabs were hand-watered at periodic intervals from the end of curling 

through end of traffic testing. Slab corner measurements made during the course of the test 

using deflection transducers verified that the slabs remained essentially flat. A fuller 

discussion of the CC2 test strip and test slab experiments that preceded construction of the 

test items and informed the above design decisions is given in Hayhoe (2004). 

Traffic on test item MRC began on April 27 and ended on June 24, 2004. Traffic on test 

items MRG and MRS began on July 6 and ended on December 10, 2004. The nominal load 

for all tests was 24,950 kg (55,000 lbs.) per wheel at 1448 kPa (210 psi) tire pressure. A 

summary of the traffic applied to each test item is presented in Table 2. 

 

Table 2: Traffic Summary for CC2 Test Items. 

 

Passes Completed  

Test Item 

 

Gear Type Apr-Jun 2004 Jul-Sep 2004 Oct-Dec 2004 Total 

MRC - North 4-wheel 12675 0 0 12675 

MRC - South 4-wheel 5405 0 0 5405 

MRG - North 6-wheel 0 21186 9834 31020 

MRG - South 4-wheel 0 21162 9834 30996 

MRS - North 6-wheel 0 20262 0 20262 

MRS - South 4-wheel 0 21162 9834 30996 

 

CENTERLINE

22.9 m (75 ft)

1
8
.3

 m
 (

6
0
 f
t)

22.9 m (75 ft)22.9 m (75 ft)

MRC MRG MRS
North Carriage
Trafficked Area

South Carriage
Trafficked Area

Direction of

Traffic

7.6 m (25 ft) Transition

Area (Typ.)

 
Figure 1: Layout of CC2 test items at the NAPTF. 
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(a) 6-wheel gear. (b) 4-wheel gear. 

 

Figure 2: Gear load dimensions for CC2 traffic tests. 
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2 PAVEMENT PERFORMANCE AND DISTRESS MONITORING 

Several methods were used to monitor the performance of the CC2 test items during the 

course of the test:  

1. Heavy-weight deflectometer (HWD) tests were conducted prior to testing and at various 

intervals after the start of testing. These tests were useful in determining at what coverage 

level the pavement experienced significant loss of bearing capacity. 

2. The structural response of the pavement to traffic loading was monitored continuously 

using embedded sensors. Instrumentation included concrete strain gages, and horizontal 

and vertical deflection transducers. Anomalous responses from strain gages can indicate 

the presence of a crack in a concrete slab before it propagates to the surface and becomes 

visible. 

3. Visual surveys of the pavement surface were performed at frequent intervals. Observed 

distresses were recorded using the procedures in ASTM D 5340-03, “Standard Test 

Method for Airport Pavement Condition Index Surveys” (ASTM, 2003). From the 

observed data, a set of detailed distress maps of each test item was prepared showing the 

progress of the deterioration with additional traffic coverages (Figure 3). 

The distress surveys were particularly important for relating the applied coverages to the 

observed pavement performance. The rigid pavement failure model incorporated in the FAA’s 

LEDFAA thickness design procedure makes use of the structural condition index (SCI) 

concept originally proposed by Rollings (1988). As defined by Rollings, SCI is the structural 

component of the pavement condition index (PCI). The SCI is determined using the same 

procedures as the PCI for rigid pavements, except that only the load related distress types are 

considered. As a result, the SCI is always equal to or higher than the PCI for the same 

pavement feature. The specific distresses included by Rollings in the SCI computation were: 

corner breaks; linear (longitudinal/transverse/diagonal) cracks; shattered slabs; shrinkage 

cracks (used in this case to describe load-induced linear cracks that do not extend all the way 

across the slab); and joint and corner spalls. In the present analysis, the same methodology 

was used for computing SCI, except that joint and corner spalls were excluded from the list of 

structural distresses. Although significant spalls were observed on some of the NAPTF test 

items, it was felt that the spalling was primarily a construction-related rather than a load-

related distress, and excluding it from the SCI computation led to better correspondence with 

previous full-scale test data. 

 

 

   
(a) Test Item MRC (b) Test Item MRG (c) Test Item MRC 

 

Figure 3: Final distress maps for CC2 test items. Locations of core samples are indicated by 

stars. Grayed areas indicate areas where spalling was observed. 
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It is important to distinguish the SCI as defined by Rollings (1988) and as used in the 

present analysis from the definition of structural PCI adopted by the U.S. Navy and as 

implemented in later versions of the MicroPAVER pavement management software (U.S. 

Army Corps of Engineers CERL, 2004). The latter includes several additional distress types 

not considered in the original definition and is therefore not consistent with the SCI-based 

FAA rigid pavement design procedures. 

3 ANALYSIS OF SCI VERSUS COVERAGES 

In the analysis of the CC2 traffic tests, the change in SCI was taken as the principal measure 

of pavement performance. The rigid pavement failure model in the LEDFAA design 

procedure assumes that there is a predictable relationship between the number of coverages at 

a given load level and the amount of structural distress as represented by the SCI.  

A newly constructed pavement has an SCI equal to 100. Initially, as traffic is applied, the 

SCI remains at 100 although pavement life is being consumed. At the appearance of the first 

structural crack, the SCI drops below 100, and continues to deteriorate with additional 

coverages until the pavement is completely failed. The number of coverages at which a first 

structural crack appears (i.e., at which SCI just drops below 100) is designated by CO. The 

number of coverages corresponding to SCI = 0 (total failure, characterized by shattered slabs 

and significant loss of bearing capacity) is designated by CF. For design purposes, failure of a 

rigid pavement is defined by SCI = 80. This is the SCI that would be computed for a 

pavement in which 50 percent of the slabs exhibit some structural cracking. For a 

conventional rigid pavement (slab on an unbound aggregate base), the number of coverages to 

the design failure condition SCI = 80 is obtained by linearly interpolating between CO and CF 

on a plot of SCI versus the log of coverages. As shown in Figure 4, the full-scale tests 

conducted at the NAPTF generally validate this approach and show that a straight-line model 

of SCI versus log of coverages is a reasonable assumption for design. 

In Figure 4, it is important to distinguish the number of coverages from the number of 

vehicle passes. The pass-to-coverage ratio (P/C) relates these two variables and is a function 

of the gear configuration for the applied wander pattern. For the basic 66-position wander 

pattern used in the tests, for both the 6-wheel and 4-wheel gear configurations, the computed 

pass-to-coverage ratio was 4.71. For the truncated wander pattern used on test item MRC-

North, a slightly smaller P/C of 3.80 was computed. The trendlines in Figure 4 were 

computed as a linear best fit to the observed data points. Following Rollings (1988), the 

trendlines were extended to the SCI = 100 and SCI = 0 lines in order to obtain the values for 

CO and CF respectively. This method allows the CO and CF values to be based on analysis of 

the entire trend of SCI versus coverages, rather than on single observations, which are subject 

to high variability. The regression data and the computed values of CO and CF for each test are 

reported in Table 3. 

 

3.1 Distress Modes Observed in CC2 Test Items 

As stated above, care was taken to ensure that slabs remained substantially flat and uncurled 

during testing, and these efforts were successful. Measured uplift at all corners remained at 

0.38 mm (15 mils) or less. Nevertheless, top-down cracks were not eliminated in either the 

outside lanes or the inside lanes. In the inside lanes receiving traffic from both wheels of the 

dual axle, both top-down and bottom-up fatigue cracks were observed. (The direction of the 

crack was determined from extracted cores where possible - see Figure 5a.) The outside lanes 

received either no direct traffic (MRC-N) or traffic from only one wheel of the dual, 
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suggesting that top-down cracks observed in the outside lanes (Figure 5b) were induced in 

part by loads transferred through the joints via the dowels. The significant differences in 

cracking modes observed between the inner and outer slabs complicated the SCI evaluation of 

the test items, because it is ordinarily assumed that the deterioration of slabs (as measured by 

change in SCI) is correlated to the amount of traffic applied. In general, however, cracks 

appeared first on slabs located in the outside lanes, even though those slabs received relatively 

less traffic from the applied wander pattern (Fig. 1). If all 10 slabs in a given test item were 

included in the SCI sample, then the early appearance of top-down cracks such as Figure 5(b) 

would tend to distort the SCI-vs.-coverage analysis, leading to inconsistent values of the CO 

factor. For this reason, it was decided to include only those slabs receiving traffic from both 

tires in the dual module (i.e., the five inside slabs) in the SCI sample units for analysis. For 

purposes of SCI evaluation on the inside slabs, no distinction was made between visible 

bottom-up and top-down cracks. 
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Figure 4: Plot of SCI versus log of coverages for all CC2 test items with trendlines. 

 

Table 3: Regression Data for Analysis of SCI Versus Coverages. 

 

Regression Constants
1 

 

Test Item A B 

 

R
2
 

Coverages to 

Initial Crack, CO 

Coverages to  

Full Failure, CF 

P/C 

MRC-N -167.43 572.15 0.821 661 2613 3.80 

MRC-S -148.36 506.04 0.827 546 2576 4.71 

MRG-N -247.03 941.57 0.964 2551 6480 4.71 

MRG-S -246.96 935.12 0.965 2408 6117 4.71 

MRS-N -101.71 374.94 0.896 505 4855 4.71 

MRS-S -231.66 871.57 0.961 2141 5784 4.71 

Test Strip -90.33 296.37 0.904 149 1910 4.13 
1 ( ) BCA += logSCI  
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(a) Core sample showing a bottom-

up crack in test item MRS-South 

(b) Top-down crack observed in outside lane of test item 

MRC-North (Slab S-2) 

 

Figure 5: Examples of fatigue cracks observed in CC2 test items. 

 

3.2 CC2 Test Strip Results 

Figure 4 and Table 3 contain data for the CC2 Test Strip in addition to the main CC2 test 

items described above. These results were obtained from the full-scale trafficking to failure of 

the test strip conducted in March-April 2002. The test strip layout is illustrated in Figure 6. 

Traffic, consisting of a dual-tandem gear with 24,950 kg (55,000 lbs.) per wheel, was applied 

to the shaded area in Figure 6. The gear configuration was similar to Figure 2(b), except that 

the dual spacing was 111.8 cm (44 in.).  There were other significant differences between the 

test strip construction and the other CC2 test items that could have impacted its performance 

to a unknown degree: 

� The test strip was constructed over a low-strength silty clay (CBR 4-5), rather than the 

medium strength clay (CBR 7-8) used for the other test items. The structure above the 

subgrade consisted of  a 27.9 cm (11 in.) slab, supported by a 15.6 cm (6.1 in.) econocrete 

stabilized base, on a 21.3 cm (8.4 in) aggregate subbase layer. 

� The test strip slabs were doweled in the longitudinal direction only. Transverse joints were 

weakened-plane contraction joints. Since there were only two lanes, the outside edges were 

effectively free. 

� No fly ash was used in the test strip concrete mix. Hence, the effective flexural strength of 

the concrete slabs was higher than for the other CC2 test items. 

� Curing procedures varied from slab to slab. This was part of the experiment that 

established the test procedures for the main CC2 test items. 

 As shown in Figure 6, there were two sizes of test strip slabs built, 6.1 x 6.1 m (20 x 20 ft.), 

and 4.6 x 4.6 m (15 x 15 ft.). Because significant upward curl leading to premature load-

induced corner breaks was observed on the four 6.1 m (20 ft.) slabs, these slabs were excluded 

from the performance analysis. The two lanes of slabs designated “S Slabs” and “C Slabs” 

were distinguished by the concrete mix used. As discussed in McQueen et al. (2002), the S 

slabs used a three-part “optimized” aggregate mix, while the C slabs used a two-part 

aggregate mix similar to the original CC1 experiment. Consistent with the analysis of the 

other CC2 test items, only the slabs receiving traffic from both wheels of the dual module 

(i.e., the S slabs) were included in the SCI calculation. Hence, the SCI values reported in 

Figure 4 for the test strip are based on four of the twelve slabs (the 4.6 m S slabs only). 

Design factors, discussed below, were computed for the test strip based on the S slab 

properties. 
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Figure 6: Final distress map for CC2 test strip. 

 

3.3 Stabilized and Non-Stabilized Test Items 

The CC2 traffic tests enabled a direct three-way comparison of conventional (aggregate base), 

stabilized base, and slab-on-grade construction. It is generally believed that one of the benefits 

of stabilized bases for rigid pavements, which are required by the FAA for airports accepting 

aircraft of over 45,360 kg (100,000 lbs.), is that they provide additional pavement durability 

beyond the initial cracking phase. The LEDFAA pavement design procedure accounts for this 

benefit by extending the downward leg of the SCI-vs.-coverages curve as shown in Figure 7. 

Figure 7 compares the data points from test items MRS-N and MRS-S with the current 

LEDFAA rigid pavement failure model (FAA 2004) including stabilized base compensation. 

It is clear from the curves in Figure 7 that the nonlinear trend in the current LEDFAA failure 

model does not represent the actual post-cracking behavior of a stabilized base structure under 

traffic. Rather, the data indicate that, regardless of whether or not a stabilized base is used, the 

deterioration of the SCI is best represented by a model that is linear in the log of coverages. 
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Figure 7: SCI vs. coverage curves for stabilized base test items, comparing observed data 

points with the current LEDFAA rigid pavement failure model.  
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In general, the results of the CC2 tests support the principle that higher quality subbases 

extend the useful life of the pavement, and this extra durability is reflected in the slope of the 

SCI-vs.-log(C) trendline. Examining Figure 4, it is seen that the two test items producing 

markedly flatter slopes (MRS-N and Test Strip) are both stabilized base structures, while in 

Table 3 it is shown that the slope of the trendline (parameter A) is generally highest for 

stabilized structures, somewhat steeper for the conventional structures (MRC), and highest for 

the slab placed directly on the subgrade soil (MRG). Indeed, it was observed that the MRG 

test items progressed rapidly to complete failure once cracking initiated. The only exception 

to the general rule was test item MRS-S, which exhibited a slope more consistent with the 

MRG structures. The reason for this exception is being further investigated. 

As seen in Figure 7, the compensation for high-stiffness bases in LEDFAA can be 

significant and results in reduced design thicknesses for both new pavements and overlays on 

stabilized subbases. The degree of deviation from the basic straight-line relationship (the 

dashed line in Fig. 7) is of critical importance for rigid overlay designs, which are concerned 

with the lower portion of the curve for SCI between 40 and 80. For new rigid pavement 

designs, where the thickness is determined by the intersection of the curve with the SCI 80 

line, stabilized base compensation is less critical but still significant. For the FAA rigid design 

procedures now under development, calibration studies are being performed comparing both 

stabilized base and conventional thickness designs to the current FAA standard in AC 

150/5320-6D (FAA 2004). These comparisons will be used to determine the appropriate 

modification to the basic rigid pavement failure model for stabilized bases. 

4 ANALYSIS OF DESIGN FACTOR VERSUS COVERAGES 

The LEDFAA rigid pavement failure model is based on an analysis of several previous full-

scale traffic tests conducted by the U.S. Army Corps of Engineers (COE) between 1943 and 

1974 (Parker et al. 1979). Rollings (1988) obtained the following regression equations: 

 

 ( )OCDF log3920.05234.0 +=  (1a) 

 ( )FCDF log3881.02967.0 +=  (1b) 

 

where DF, the design factor, is the ratio of the concrete flexural strength to the computed 

design stress. For a given DF, linear interpolation between CO and CF on the SCI-vs.-log(C) 

plot yields the dashed lines shown in Figure 7. The regression constants were derived from 

analysis of 30 data points with DFs computed using layered elastic analysis of the test 

sections. The FAA’s new pavement thickness design program FAARFIELD, planned for 

completion in 2006, will update equations 1(a) and (b) by deriving new regression constants 

based on: 

� Re-analysis of the original full-scale test data with design factors computed using three-

dimensional finite element (3D-FE) edge stresses in lieu of layered elastic (interior 

stresses). This will make the failure model consistent with the rigid pavement structural 

model that will be used to obtain design stresses in FAARFIELD. 

� Inclusion of seven new data points from the CC2 tests (MRC-North and -South, MRG-

North and -South, MRS-North and -South, and the test strip). 

To date, preliminary design factors based on the 3D-FE structural model as implemented in 

the FAA’s beta design program FEDFAA (http://www.airporttech.tc.faa.gov) have been 

computed for both CC2 and historical full-scale tests using available information for COE 

tests (Parker et al. 1979, Rollings 1988). The CC2 design factors will be finalized in the near 

future based on material characterization test results from post-traffic testing at the NAPTF. 
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5 CONCLUSIONS 

Rigid pavement full-scale traffic tests recently completed at the FAA’s National Airport 

Pavement Test Facility provided pavement performance and failure data for three new rigid 

pavement test items and a test strip. The performance data were analyzed using the SCI 

concept to obtain coverages to initiation of structural cracking and to full structural failure. 

Test results are being analyzed currently in conjunction with previous full-scale tests and will 

be used to update the failure model for rigid pavement and overlay design in future FAA 

design software. 
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